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Abstract

The yield behavior of a closed cell polymeric foam is investigated under

multiaxial loadings. A phenomenological yield function is developed to characterize the

initial yield behavior of the closed cell polymeric foam under a full range of loading

conditions. The principal stresses of a relative stress tensor and the second invariant of

the deviatoric stress tensor are the main parameters in the yield function. The yield

function is a linear combination of non-quadratic functions of the relative principal

stresses and the second invariant of the deviatoric stress tensor. The convexity of the

yield surface based on the non-quadratic yield function is proved. The non-quadratic

yield function is shown to well characterize the yield behavior of a closed cell polymeric

foam in Deshpande and Fleck (2001) under a full range of loading conditions. Finally, a

comparison of different phenomenological yield functions to characterize the yield

behavior of the foam is presented.
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1. Introduction

Applications of foams are found in many industries for their properties of low

densities, low thermal conductivity, high sound absorption and large compressive strains.

Polymeric structural foams have been applied to sandwich structures and automotive

parts to improve stiffness, durability and crashworthiness with potential benefits of light

weight and cost saving (Yamashita et al., 1997; Alwan et al., 2000; Ishida et al., 2001;

Pan et al., 2002). Rigid closed cell polyurethane foams are frequently used as an impact

energy absorber and as insulation in case of a hypothetical fire accident in plutonium

shipping casks (Maji et al., 1995). Syntactic foams, made by a polymeric matrix filled

with hollowed spherical inclusions, have been used for ablative heat shields of re-entry

vehicles in the aerospace industry, and as structural components such as hulls and

bulkheads of ships and submarines (Bardella and Genna, 2001). A hydroxyapatite foam

was used for bone implants due to its high biocompatibility and its capability for the

penetration of bone into the implant leading to a secure, mechanically stable and

integrated implant (Callcut and Knowles, 2002).

In order to determine the maximum load carrying capacity of foams or foam-

reinforced structures, the yield or failure behavior of foams needs to be characterized

accurately. The yield or failure behavior of foams has been studied by various

investigators recently (Gibson et al., 1989; Triantafillou et al., 1989; Bilkhu et al., 1993;

Schreyer et al., 1994; Nusholtz et al., 1996; Gibson and Ashby, 1997; Zhang et al., 1997;

Chen and Lu, 2000; Deshpande and Fleck, 2000, 2001; Gdoutos et al., 2002; Zhang and

Lee, 2003; Doyoyo and Wierzbicki, 2003). Since foams are pressure-sensitive and

plastically compressible, a pressure sensitive yield function should be used to model their

yield behavior. For pressure-sensitive materials, the second invariant of the deviatoric
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stress tensor and the first invariant of the stress tensor (or the mean stress) are usually the

two main parameters considered in the yield or failure function.

From the phenomenological viewpoint, Drucker and Prager (1952) proposed a

pressure-sensitive yield criterion which is a linear combination of the Mises stress (or the

square root of the second invariant of the deviatoric stress tensor) and the mean stress.

For modeling of the yield or failure behavior of composites, a yield criterion based on a

general quadratic function of stresses was proposed by Tsai and Wu (1971). The Tsai-

Wu yield or failure criterion has recently been adopted to describe the yield behavior of

foams in Gdoutos et al. (2002). Similarly, Bilkhu et al. (1993) and Nusholtz et al. (1996)

proposed a quadratic yield function with a compact form in terms of the Mises stress and

the mean stress for polymeric foams. Recently, Doyoyo and Wierzbicki (2003) proposed

a quadratic yield function in terms of the second invariant of the deviatoric stress tensor

and the first invariant of the stress tensor. The yield function of Doyoto and Wierzbicki

(2003) can be shown to be equivalent to that of Bilkhu et al. (1993) and Nusholtz et al.

(1996). These yield or failure functions mentioned are quadratic functions of the stresses.

From the mechanism viewpoint, Gibson et al. (1989) developed a yield or failure

surface representing the inner envelope of the yield or failure surfaces based on the

mechanisms of cell wall bending for deviatoric loading and cell wall stretching for

hydrostatic loading. They also analyzed the elastic buckling of cell walls and added a

buckling cap to the yield surface. The yield surface with a buckling cap can be used to fit

the experimental data under compression and shear dominant loading conditions

(Triantafillou et al., 1989). Based on the yield surface with a buckling cap of Gibson et al.

(1989), Puso and Govindjee (1995) developed a constitutive law for foams for
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implementation into a commercial finite element code with a non-associated flow rule to

account for the observed nearly zero plastic Poisson’s ratio under compression dominant 

loading conditions.

Deshpande and Fleck (2000, 2001) proposed a phenomenological yield function

for foams based on their experimental observations. Although their quadratic yield

function fits well the experimental data under tension and shear dominant loading

conditions, a buckling cap based on a maximum compressive principal stress yield

criterion is needed to fit the experimental data under compression dominant loading

conditions. With consideration of the buckling cap as the yield surface, Deshpande and

Fleck (2001) can predict correctly a plastic Poisson’s ratio of zero under uniaxial 

compression based on the associated flow rule in contrast to the use of non-associated

flow rules in Puso and Govindjee (1995) and Zhang et al. (1997). It should be noted that

Jeong and Pan (1995) and Jeong (2002) proposed yield functions for porous plastics

based on their computational results. However, the yield functions have not been

validated for closed cell foams with relatively large void volume fractions. Based on the

upper bound analysis of Gurson (1977), Zhang and Lee (2003) developed a yield function

to describe the yield behavior of open cell foams. Recently, Aubertin and Li (2004)

developed a yield function to describe the yielding and failure behaviors of engineering

porous materials. Wang and McDowell (2005) derived initial yield functions for metal

honeycombs with consideration of cell failure by plastic yielding.

From the phenomenological viewpoint, for dense metallic materials, non-

quadratic yield functions were proposed to characterize the yield behavior under

multiaxial loading conditions, for example, see Hershey (1954), Hosford (1972), Hill
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(1979), Logan and Hosford (1980), Barlat et al. (1989, 1991, 1993, 1997, 2003, 2005),

Karafillis and Boyce (1993), Yoon et al. (2000, 2004), Bron and Besson (2004), Cazacu

and Barlat (2004), and Hu (2005). Higher order terms of the stresses in these yield

functions are needed to characterize the observed flatness and rounded vertices of the

yield surface in the stress space. For polymeric foams, Shaw and Sata (1966), Patel

(1969) and Zaslawsky (1973) suggested a maximum principal stress yield criterion.

Therefore, it is logical to consider a yield function in terms of higher order terms of the

stresses to characterize the flat portion of the yield surface based on a maximum principal

stress yield criterion for foams from the phenomenological viewpoint. Computationally,

the existence of sharp corners or vertices of yield or potential surfaces can result in

numerical difficulties in determining the plastic flow in finite element simulations, for

example, see Chou et al. (1994). Therefore, the sharp intersections of multiple yield

surfaces of Gibson et al. (1989), Deshpande and Fleck (2001), and Puso and Govindjee

(1995) can result in numerical difficulties in finite element simulations. On the other

hand, numerical difficulties still exist for the higher order yield function of Barlat et al.

(1997) in finite element simulations under full stress states (Barlat et al., 2003). However,

under plane stress conditions, the higher-order yield functions of Barlat et al. (1997, 2003)

do not appear to encounter any numerical difficulties in finite element simulations.

In this paper, a phenomenological yield function is developed to characterize the

initial yield behavior of a closed cell polymeric foam under a full range of loading

conditions. The goal is to develop a single yield function to describe the yield or failure

behavior of the foam instead of multiple yield functions under different loading

conditions proposed by Gibson et al. (1989) and Deshpande and Fleck (2001). The
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principal stresses of a relative stress tensor and the second invariant of the deviatoric

stress tensor are the main parameters in the yield function. The yield function is a linear

combination of non-quadratic functions of the relative principal stresses and the second

invariant of the deviatoric stress tensor. The convexity of the yield surface based on the

non-quadratic yield function is investigated. The non-quadratic yield function is used to

characterize the yield behavior of a closed cell PVC (polyvinylchloride) foam (H200)

with a density of 200 kg/m3, a relative density of 16%, and a cell size of approximately

200 m under a full range of loading conditions (Deshpande and Fleck, 2001) to

demonstrate the applicability of the yield function. A comparison of different yield

functions to characterize the yield behavior of the closed cell foam is also presented.

2. A non-quadratic yield function for isotropic polymeric foams

We propose a non-quadratic isotropic yield function  which is a linear

combination of two non-quadratic functions 1 and 2. The function is expressed as

  01 21  m (1)

where  is a fitting parameter with a value between 0 and 1, and  is a reference stress.

The two non-quadratic functions 1 and 2 are expressed in terms of the relative

principal stresses 1S , 2S and 3S as
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The relative principal stresses 1S , 2S and 3S are defined as
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bS  11 

bS  22  (4)

bS  33 

where 1 , 2 and 3 are the principal stresses of the stress tensor. Here, b is a fitting

parameter needed to model the different yield behaviors under tension and compression.

The exponent m in Equations (1), (2) and (3) should depend on the foam

considered but needs to be an even integer greater than or equal to 2 to ensure the

convexity of the yield function. When 2m , the yield function in Equation (1),

which becomes a linear and quadratic combination of the principal stresses, can be

reduced to the Tsai-Wu yield criterion (Tsai and Wu, 1971) and a yield function proposed

by Bilkhu et al. (1993) and Nusholtz et al. (1996). When m and 0 , the yield

function in Equation (1) corresponds to a maximum principal stress yield criterion.

Note that Shaw and Sata (1966), Patel (1969) and Zaslawsky (1973) suggested a

maximum principal stress yield criterion to fit their experimental data for the yield of

polymeric foams. When 2m and 1 , the yield function  in Equation (1)

corresponds to the Mises yield criterion. Note that the yield surfaces of Gibson et al.

(1989) and Deshpande and Fleck (2001) include flat buckling caps to fit the experimental

data. A large value of m is therefore needed to give nearly flat portions of the yield

surface based on the proposed yield function  to fit the buckling caps under

compression dominant loading conditions . Note that Hershey (1954), Hosford (1972),

Hill (1979), Logan and Hosford (1980), Karafillis and Boyce (1993), and Barlat et al.

(1997) proposed non-quadratic yield functions with the exponent m not equal to 2 to fit

the yield behavior of incompressible polycrystalline metals. It should be noted here that
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the non-quadratic yield function proposed by Karafillis and Boyce (1993) is a linear

combination of non-quadratic functions of the Mises yield function and the upper bound

yield function based on the principal values of the deviatoric stress tensor (Mendelson,

1968). Here, the proposed non-quadratic yield function  for foams is a linear

combination of a non-quadratic function 1 of the relative principal stresses for the nearly

flat portion of the yield surface under compression dominant loading conditions and a

non-quadratic function 2 of the second invariant of the deviatoric stress tensor for the

portion of the yield surface under shear dominant loading conditions. Note that the third

invariant of the deviatoric stress tensor can be incorporated into pressure-sensitive yield

functions, for example, see Lee and Ghosh (1996) and Rizzi et al. (2000). In the

proposed yield function , the fitting parameter b is used to model the different yield

behaviors of foams under tension and compression loading conditions.

Since the experimental results for a PVC foam (H200) in Deshpande and Fleck

(2001) are used as a guide to develop the yield function, we consider the axisymmetric

loading conditions as in Deshpande and Fleck (2001). Figure 1 shows a circular

cylindrical foam specimen and a Cartesian coordinate system. For simplicity, the value

of the exponent m is pre-selected as 8 for the PVC foam. Then the three fitting

parameters , b and  can be determined by the yield strengths under three different

loading conditions. However, Deshpande and Fleck (2001) provided the yield strengths

for the PVC foam under a full range of loading conditions. Note that the PVC foam can

be treated as a transversely isotropic material with the normal anisotropic axis in the 3X

direction. We selected nine different yield strengths under different loading conditions to

conduct a parametric study to fit the experimental data. These nine strengths are the
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hydrostatic compressive strength hc , the in-plane balanced biaxial compressive strength

bc ( 21   ), the in-plane uniaxial compressive strength  1c , the out-of-plane

uniaxial compressive strength  3c , the axisymmetric shear strength s, the in-plane

uniaxial tensile strength  1t , the out-of-plane uniaxial tensile strength  3t , the in-

plane balanced biaxial tensile strength bt ( 21   ), and the hydrostatic tensile

strength ht . The values of these yield strengths in terms of MPa for the PVC foam are

listed in Table 1.

Based on a parametric study, at least five yield strengths should be selected and

three of them must be hc , s and ht in order to fit the experimental data reasonably

well for the PVC foam under different loading conditions. Note that the axisymmetric

shear strength s is defined by the stress state  sss  2,2,2  under

axisymmetric loading conditions. Using the five yield strengths, hc , bc ,  1c , s and

ht , and substituting the five stress states,  hchchc  ,, ,  0,, bcbc  ,   0,0,1c ,

 sss  2,2,2  and  hththt  ,, , into Equation (1), we have five independent

equations with three unknowns , b and .

In order to fit a non-quadratic yield surface, a large value of m can be pre-

selected, as discussed in Karafillis and Boyce (1993). We adopt the same strategy.

However, we have conducted a parametric study with 2m , 6 , 8, 12 , and 24 . A

comparison of the yield surfaces based on 2m , 6 , 8, 12 and 24 indicates that the

yield surface based on 8m can fit the experimental data better. A nonlinear least

squares method was used to find the three fitting parameters, , b and , to fit the five

independent equations. The nonlinear least squares method gives a minimum of the sum
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of the squares of the functions based on the five independent equations. The five

independent equations for determination of these fitting parameters can be found in

Appendix A. Note that the solutions based on the nonlinear least squares method are

non-unique. Different sets of the fitting parameters can be obtained depending upon

different initial guesses. Based on a parametric study, if the initial guesses of the fitting

parameters b and  are any real numbers between -30 and 90, and the initial guess of

the fitting parameter  is any real number between 0 and 1, all the solutions obtained are

nearly the same. The set of the fitting parameters , b and  that we found for 8m

is listed in Table 2.

2.1 Yield surfaces based on the non-quadratic isotropic yield function 

The yield surface of the foam based on the isotropic yield function with the

three fitting parameters, , b and , is plotted in Figure 2 in terms of the principal

stresses 1 , 2 and 3 . The commercial surface modeling software SURFACER is

employed to generate the three-dimensional yield surface. Figure 2 shows the yield

surface in the principal stress space. Some nearly flat portions of the yield surface for

01  , 02  and 03  and for 01  , 02  and 03  are marked in the figure.

The nearly flat portions of the yield surface are similar to the parts of the yield surface

based on the maximum principal stress yield criterion. Figure 2 also shows the cylinder-

like portion of the yield surface parallel to the hydrostatic stress axis 321   . This

portion of the yield surface is similar to that based on the Mises yield criterion. The

hydrostatic stress axis 321   passes the loci of the hydrostatic compressive and

tensile yield stress states,  hchchc  ,, and  hththt  ,, , on the yield surface. Note
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that the portions of the yield surface with rounded corners or vertices as shown in Figure

2 in the compressions and shear dominant regions represent the stress states that are

smoothly connecting the two portions of the yield surfaces based on two different

microscopic deformation mechanisms.

The yield surface based on the yield function and the experimental data of

Deshpande and Fleck (2001) are plotted in Figure 3 in terms of 1 and 3 . As shown in

Figure 3, the experimental data are adequately fitted. The yield surface based on the

yield function and the experimental data are plotted in Figure 4 in terms of m and

13   , where  3321  m . Note that 13   is the Mises stress under

axisymmetric loading conditions. As shown in Figure 4, the experimental data are fitted

reasonably well. Figure 5 shows the yield surface based on the yield function and the

experimental data for the foam in terms of 1 and 3 in the plane of 02  . As shown

in Figure 5, the experimental data are fitted reasonably well in this plane. The yield

surface based on the yield function and the experimental data in the plane of 02 

are plotted in Figure 6 in terms of m and 13   . As shown in Figure 6, the

experimental data are also fitted reasonably well.

2.2 Convexity of the non-quadratic isotropic yield function 

We have shown that the yield surface based on the yield function can fit the

experimental data well. The convexity of the yield surface based on the yield function 

in the stress space can be proved by proving that the two yield surfaces based on the two

yield functions 1 and 2 are convex in the stress space. First, we will prove that the
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yield surface based on the yield function 1 in convex. A yield function Ψ is convex if

its Hessian matrix H

ji
ij

Ψ
H
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


2

(5)

is positive semi-definite (Rockafellar, 1970). The property of the positive semi-

definiteness can be proved by showing that the eigenvalues of the Hessian matrix H are

non-negative. Since the fitting parameter b in the yield function contributes to the

translation of the yield surface, it can be taken as 0 without changing the convexity of
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The three eigenvalues,   2
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21  mmm  and   2
31  mmm  , are not negative
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where

3211 2  C (8)

1322 2  C (9)

2133 2  C (10)

     
2

2
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The three eigenvalues, 0 ,
4

2
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C
mC m

and
 

4

2
4

2
13

C
Cmm m

, are not negative when m is

greater than or equal to 1.

Both 1 and 2 are convex in the stress space when m is taken as an even integer

greater than or equal to 2. Since the sum of two convex functions is also a convex

function (Rockafellar, 1970), the convexity of the yield surface is ensured when m is an

even integer greater than or equal to 2. Note that the initial yield surface of the H200

foam appears to be convex based on the experimental data of Deshpande and Fleck

(2001).

In general, foams can be idealized as orthotropic materials due to the foaming

process. The orthotropy should be taken into account in the formulation of a yield

function for foams. Since we have no experimental data for the shear strengths with

respect to the orthotropic symmetry planes for the PVC foam (H200), we here develop a

special yield function for orthotropic foams under restricted loading conditions without

any shear contribution with respect to the orthotropic symmetry planes. The

development of the special orthotropic yield function for orthotropic foams is presented

in Appendix B.



14

2.3 Other yield functions

The yield surfaces based on the quadratic yield functions proposed by Bilkhu et al.

(1993) and Deshpande and Fleck (2000, 2001) with a buckling cap are also presented

here for comparison. Bilkhu et al. (1993) proposed a quadratic yield function b in terms

of e and m for polymeric foams as
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where , and are fitting parameters. e and m are the Mises stress and mean

stress, respectively. e and m can be expressed in terms of the principal stresses 1 ,

2 and 3 as
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
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Here, the three fitting parameters, , and , in Equation (12) for the PVC foam are

determined by the hydrostatic compressive strength hc , the out-of-plane uniaxial tensile

strength  3t , and the hydrostatic tensile strength ht , as listed in Table 1. The values

of these three fitting parameters, , and , for the foam are 6250.3 MPa, 5558.4

MPa and 5950.0 MPa, respectively.

A quadratic yield function d proposed by Deshpande and Fleck (2000, 2001) is

written as



15

  0
)3(1

1 2222
2 


 Ymed 


 (15)

where Y is the uniaxial tensile or compressive strength of a foam, and is a fitting

parameter. Here, Y is taken as the out-of-plane uniaxial tensile strength  3t for the

foam as listed in Table 1, and the stress state of 2.221  MPa and 5.23  MPa

of the experimental data for the foam is used to determine the fitting parameter . The

value of is determined as 2013.1 for the foam.

Figure 7 shows the yield surfaces in terms of 1 and 3 based on the function b

in Equation (12), the function d in Equation (15), and the function in Equation (1).

The experimental data and a buckling cap are also shown in the figure. Both quadratic

yield functions b and d cannot fit the yield behavior of the foam under compression

dominant loading conditions. A buckling cap based on a maximum principal stress yield

criterion, shown as two dotted lines in Figure 7, is needed in order to adequately fit the

experimental data. Figure 7 also shows that the function can fit the experimental data

better than the functions b and d with the additional buckling cap.

Figure 8 shows the yield surfaces based on the functions b, d , and in terms

of m and 13   . The experimental data and a buckling cap are also shown in the

figure. As shown in the figure, without the additional buckling cap shown as the dotted

lines, the functions b and d alone cannot fit the yield behavior of the foam well under

compression dominant loading. On the other hand, the function can fit the full range

of the yield behavior of the foam reasonably well. Note that the yield surface based on
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the function is not symmetric with respect to the m axis whereas the yield surfaces

based on the functions d and b are symmetric with respect to the m axis.

Figure 9 shows the yield surfaces based on the functions b, d , and in terms

of 1 and 3 in the plane of 02  . The experimental data and a buckling cap are also

shown in the figure. The function can fit the experimental data better than the

functions b and d alone. However, with consideration of the buckling cap, the yield

surfaces based on the functions b and d can fit the limited experimental data well. The

yield surfaces based on the functions b, d , and in terms of m and 13   in the

plane of 02  are plotted in Figure 10. The experimental data and a buckling cap are

also shown in the figure. As shown in the figure, the limited experimental data are fitted

well by the function alone and by the function d with a buckling cap. The function

b, even with a buckling cap, does not seem to fit the limited experimental data well.

2.4 Initial plastic Poisson’s ratio

We have shown that the function can fit the initial yield surface of the foam.

Now we need to specify a flow rule in order to examine theplastic Poisson’s ratioof the

foam under uniaxial compression. Both the associated flow rule and the non-associated

flow rule were used in the modeling of the yield behavior of foams in the past. Puso and

Govindjee (1995) and Zhang et al. (1997) adopted non-associated flow rules in order to

account for the observed nearly zero plastic Poisson’s ratio of polymeric foams.

However, with consideration of the buckling cap, Deshpande and Fleck (2001) can
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predict correctly a plastic Poisson’s ratio of zero under uniaxial compression based on the 

associated flow rule.

The associated flow rule is adopted here to examine the initial plastic Poisson’s 

ratio based on the initial yield surface under uniaxial compression. The associated flow

rule can be written as

i

p
i 





 (16)

where is a scalar factor of proportionality, and p
i and i , with a subscript i ranging

from 1 to 3, are the plastic strain rates and the stresses in the principal directions of the

stress tensor, respectively. Based on the associated flow rule in Equation (16) and the

function , the plastic Poisson’s ratio p for uniaxial compression with 01  and

032  can be expressed as

p

p
p

d
d

1

3




 

  
   










1
1

1
1

11

21
m

m

b

b
(17)

As expressed in Equation (17), the plastic Poisson’s ratio p is dependent upon m , 

and 1b . When the value of 1 is taken as the in-plane uniaxial compressive strength

 1c as listed in Table 1 and the fitting parameters m ,  and b are taken as those listed

in Table 2, the plastic Poisson’s ratio p can be determined to be 037.0 . The small

value is in agreement with the experimental observations of the nearly zero plastic

Poisson’s ratio of the foam.  
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When 1 , the yield function  depends on the second invariant of the

deviatoric stress tensor only. As indicated in Equation (17) based on the associated flow

rule, the plastic Poisson’s ratio for incompressible materials, 2/1p , is recovered.

When 0 , the yield function  is based on the relative principal stresses only.

Equation (17) becomes

 
 1

1

1
1

1 






 m

m
p

b
b

 (18)

As indicated in Equation (18), the plastic Poisson’s ratio p depends on m and 1b .

When m is selected to be a large even integer and 1b is selected to be a small value

less than 1, the plastic Poisson’s ratio should bea small value. When 0b , the plastic

Poisson’s ratio p is zero.

3. Conclusions and Discussions

A phenomenological non-quadratic yield function is developed here to model the

initial yield behavior of a polymeric foam. Different yield behaviors under tension and

compression dominant loading due to different yield or failure mechanisms of polymeric

foams are taken into account in the yield function. The principal stresses of a relative

stress tensor and the second invariant of the deviatoric stress tensor are the main

parameters in the yield function. The yield function is a linear combination of non-

quadratic functions of the relative principal stresses and the second invariant of the

deviatoric stress tensor. The convexity of the yield surface based on the yield function is

proved. The yield function is shown to fit the yield surface of the foam under a full range

of loading conditions. A comparison of different phenomenological yield functions to fit
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the yield surface of the foam is also presented. Note that the proposed yield function is

intended to model the initial yield surface with flat portions for closed cell foams. With

three fitting parameters and a large exponent, the proposed yield function can be quite

flexible to fit yield surfaces with flat portions in compression and tension dominant stress

states.

It should be mentioned that a nonlinear least squares method can be used to find

better fitting parameters for b and d . However, these better fitting parameters cannot

change significantly the general shapes of the yield surfaces to have nearly flat portions

that are needed to represent the experimental data well. Finally, Deshpande and Fleck

(2001) presented only a limited number of data points for the PVC foam (H200) under

tension dominant loading conditions. Due to the symmetry of the non-quadratic yield

function in Equation (1), the yield surface has also nearly flat portions under tension

dominant loading conditions. A quadratic yield function may fit the experimental data

well under tension dominant loading conditions. Therefore, the non-quadratic function 

in Equation (1) may be used under compression and shear dominant loadings with more

confidence. Under tension and shear dominant loading conditions, the yield functions of

Bilkhu et al. (1993) and Deshpande and Fleck (2000, 2001) may be used. When tension,

compression and shear dominant stress states are involved simultaneously, the non-

quadratic yield function  in Equation (1) should be applied with carefully selected

fitting parameters that can fit the general shape of the yield surface under tension,

compression and shear loading conditions.
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Appendix A: Equations to determine fitting parameters for isotropic foams

We first consider the case of hydrostatic compression. In this case,

hc  321 . The function in Equation (1) can be expressed as

        mm
hc

m
hc

m
hc bbb   31 (A1)

Next, we consider the case of in-plane balanced biaxial compression. In this case,

bc  21 and 03  . The function can be expressed as

        mm
bc

mm
bc

m
bc bbb  1 (A2)

Then, we consider the case of in-plane uniaxial compression. In this case,  11 c and

032  . The function can be expressed as

           mm

c
mmm

c bbb   111 (A3)

Now, we consider the case of axisymmetric shear. In this case, 21  and

0321   . Therefore, 2/321   . We can express the principal stresses

1 , 2 and 3 in terms of s. Here, s represents the axisymmetric shear strength as

illustrated by the Mohr circle shown in Figure A1. Based on the Mohr circle as shown,

221 s  and s 23  . Therefore, the function can be expressed as
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1 (A4)

Finally, we consider the case of hydrostatic tension. In this case, ht  321 .

The function can be expressed as

        mm
ht

m
ht

m
ht bbb   31 (A5)
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Appendix B: A special yield function Φ for orthotropic foams

A special non-quadratic yield function Φ for orthotropic foams with the

symmetry axes coinciding with the Cartesian axes 1x , 2x and 3x is proposed as

  01 21  mΦΦΦ  (B1)

where  is a fitting parameter with a value between 0 and 1, and  is a reference stress.

We consider the stress states with only the normal stresses 1 , 2 and 3 in the 1x , 2x

and 3x directions. No shear stresses with respect to the 1x , 2x and 3x axes are

considered. The two non-quadratic functions 1Φ and 2Φ are expressed in terms of the

relative normal stresses 1Σ, 2Σ and 3Σ as

mmm ΣΣΣΦ 3211  (B2)

     
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212
13

2
32

2
21

2 2
(B3)

The relative normal stresses 1Σ, 2Σ and 3Σ are defined as

 1111 baΣ  

 2222 baΣ   (B4)

 3333 baΣ  

where 1a , 2a , 3a , 1b , 2b and 3b are fitting parameters. Here, 1a , 2a , 3a , 1b , 2b and 3b

determine the orthotropy of a foam and the center of the yield surface. 1b , 2b and 3b are

needed to model the different yield behaviors under tension and compression in the 1x ,

2x and 3x directions.
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B.1 Determination of fitting parameters

Since the experimental results for a PVC foam (H200) in Deshpande and Fleck

(2001) are used as a guide to develop the orthotropic yield function, we here consider the

axisymmetric loadings as in Deshpande and Fleck (2001). Figure 1 shows a circular

cylindrical foam specimen and a Cartesian coordinate system. The foam is assumed to be

isotropic within the 1x - 2x plane. Normal anisotropy is assumed in the 3x direction

which is taken as the rise direction of the foam. Therefore, we can take 21 bb  and

121 aa .

Based on a parametric study, at least six yield strengths should be selected and

three of them must be hc , s and ht to determine the fitting parameters , 3a , b

( 21 bb  ), 3b and  in order to fit the experimental data reasonably well for the PVC

foam under the restricted loading conditions. Using the six yield strengths, hc ,  3c , s,

 1t ,  3t and ht , and substituting the six stress states,  hchchc  ,, ,   3,0,0 c ,

 sss  2,2,2  ,   1,0,0 t ,   3,0,0 t and  hththt  ,, , into Equation (B1)

with bbb  21 and 121 aa , we have six independent equations with five unknowns,

, 3a , b , 3b and . Note that the value of the exponent m is considered as a known

value. Here, the exponent m is taken as 8 for the foam. A nonlinear least squares

method was used to find the five fitting parameters, , 3a , b , 3b and , to fit the six

independent equations. A set of the fitting parameters, , 3a , b , 3b and , for 8m

was obtained and listed in Table B1.
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B.2 Yield surfaces based on the orthotropic yield function Φ

The yield surface of the foam based on the orthotropic yield function Φ with the

five fitting parameters, , 3a , b , 3b and , the yield surface based on the isotropic

yield function with the three fitting parameters, , b and , and the experimental

data of Deshpande and Fleck (2001) are plotted in Figures B1-B4 in terms of the different

stresses as in Figures 3-6. Figures B1-B4 show that the experimental data are fitted

reasonably well by the functions and Φ under a full range of loading conditions. As

also shown in Figures B1-B4, the yield surfaces based on both functions and Φ are

similar in terms of their shape, size and position. It should be noted that the orthotropy of

the foam in terms of different uniaxial strengths in different loading directions as shown

in Figures B3 and B4 can be approximated reasonably well by both functions and Φ.

B-3. Convexity of the orthotropic yield function Φ

In order to prove the convexity of the yield surface based on the orthotropic yield

function Φ in the stress space, we need to show that the Hessian matrix Hof the yield

function Φ is positive semi-definite (Rockafellar, 1970). The Hessian matrix Hof the

function Φ can be written as

ji
ij

Φ
H





2

(B5)

The property of the positive semi-definiteness can be proved by showing that the

eigenvalues of the Hessian matrix Hare non-negative. Note that the three fitting

parameters, 1b , 2b and 3b , in the function Φ contribute to the translation of the yield

surface in the stress space. For simplicity, they can be taken as 0 without changing the
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convexity of the yield surface. The Hessian matrix Hfor Φ with 0321  bbb can

be written as

l

j

jik

i

ji
ij
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ΦΣΦ
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
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(B6)

Here, we can define the transformation matrix ijT based on Equation (B4) as


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00
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a
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Σ
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j
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(B7)

For 01 a , 02 a and 03 a , the transformation matrix is positive definite. We have

shown that
ji 




2

for the function  is positive semi-definite when m is an even

integer greater than or equal to 2. Since Φ has the same functional form with respect to

1Σ, 2Σ and 3Σ as to 1 , 2 and 3 ,
ji ΣΣ

Φ


2

is positive semi-definite. According to

Equation (B6) with the positive definite matrix ijT , ijHis positive semi-definite when m

is an even integer greater than or equal to 2. Therefore, the yield surface based on the

function Φ is convex when m is an even integer greater than or equal to 2.
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Table 1. The yield strengths (MPa) for the PVC foam (H200)

Hydrostatic compressive strength hc -3.03

In-plane equibiaxial compressive strength bc -2.90

In-plane uniaxial compressive strength 1c -2.90

Out-of-plane uniaxial compressive strength 3c -3.03

Axisymmetric shear strength s 2.17

In-plane uniaxial tensile strength 1t 4.15

Out-of-plane uniaxial tensile strength 3t 4.42

In-plane equibiaxial tensile strength bt 4.15

Hydrostatic tensile strength ht 4.22

Table 2. The values of the fitting parameters of the function for 8m for the PVC
foam (H200)

m  b (MPa)  (MPa)

8 0.2456 0.6385 3.4436

Table B1. The values of the fitting parameters of the function Φ for 8m for the PVC
foam (H200)

m  3a b (MPa) 3b (MPa)  (MPa)

8 0.3850 0.9843 0.5685 0.8008 3.6184
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Figure 1. A circular cylindrical foam specimen and a Cartesian coordinate system.
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Figure 2. The yield surface based on the function in terms of the principal stresses 1 ,

2 and 3 . Some nearly flat portions of the yield surface for 01  , 02  and 03 
and for 01  , 02  and 03  are marked in the figure. The cylinder-like portion of
the yield surface parallel to the hydrostatic stress axis 321   is also marked in the
figure.
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Figure 3. The yield surface based on the function and the experimental data of
Deshpande and Fleck (2001) in terms of 1 and 3 .
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Figure 4. The yield surface based on the function and the experimental data of
Deshpande and Fleck (2001) in terms of m and 13   .



36

Figure 5. The yield surface based on the function and the experimental data of
Deshpande and Fleck (2001) in terms of 1 and 3 in the plane of 02  .
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Figure 6. The yield surface based on the function and the experimental data of
Deshpande and Fleck (2001) in terms of m and 13   in the plane of 02  .
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Figure 7. The experimental data of Deshpande and Fleck (2001) and the yield surfaces
based on the functions b, d , and in terms of 1 and 3 . A buckling cap is also
shown as dotted lines.
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Figure 8. The experimental data of Deshpande and Fleck (2001) and the yield surfaces
based on the yield functions b, d , and in terms of m and 13   . A buckling cap
is also shown as dotted lines.
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Figure 9. The experimental data of Deshpande and Fleck (2001) and the yield surfaces
based on the yield functions b, d , and in terms of 1 and 3 in the plane of 02  .
A buckling cap is also shown as dotted lines.
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Figure 10. The experimental data of Deshpande and Fleck (2001) and the yield surfaces
based on the yield functions b, d , and in terms of m and 13   in the plane of

02  . A buckling cap is also shown as dotted lines.
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Figure A1. The Mohr circle for the case of axisymmetric shear. Here,
221 s  and s 23  based on the conditions of 21   and

0321   . Note that s represents the axisymmetric shear strength.
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Figure B1. The yield surface based on the function Φ and the experimental data of
Deshpande and Fleck (2001) in terms of 1 and 3 . The yield surface based on the
function as shown in Figure 3 is also plotted in the figure.
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Figure B2. The yield surface based on the function Φ and the experimental data of
Deshpande and Fleck (2001) in terms of m and 13   . The yield surface based on the
function as shown in Figure 4 is also plotted in the figure.
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Figure B3. The yield surface based on the function Φ and the experimental data of
Deshpande and Fleck (2001) in terms of 1 and 3 in the plane of 02  . The yield
surface based on the function as shown in Figure 5 is also plotted in the figure.
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Figure B4. The yield surface based on the function Φ and the experimental data of
Deshpande and Fleck (2001) in terms of m and 13   in the plane of 02  . The
yield surface based on the function as shown in Figure 6 is also plotted in the figure.


